Заключение и направление будущих исследований
В данной работе был представлен метод решения задачи сокращения набора тестов, возникающей в контексте регрессионного тестирования. Данный метод основан на использовании моделей поведения программы, построенных в терминах системных вызовов, которые производятся программой во время своего выполнения. Работа метода была экспериментально исследована на модельных данных. Были исследованы такие параметры работы метода, как величина сокращения набора тестов и уровень обнаружения ошибок. Результаты работы метода были сравнены с результатами метода случайного сокращения набора тестов, и было показано, что исследуемый метод практически не уступает методу случайного сокращения набора тестов, а в большинстве случаев превосходит его.
В будущих исследованиях планируется развивать предложенный метод и, в частности, сосредоточиться на следующих направлениях. Во-первых, необходимо более четко охарактеризовать класс программ, к которым может быть применен предложенный метод. Интуитивно понятно, что результаты работы метода зависят от внутреннего устройства программы - частоты и характера обращений тестируемой программы к системным вызовам операционной системы. Например, на преимущественно вычислительных программах, где обращения к системным вызовам происходят редко, или в программном обеспечении баз данных, где разнообразность поведения программы характеризуется скорее характером передаваемых данных, нежели разными путями в графе выполнения программы, исследуемый метод может и не показать хороших результатов. Во-вторых, имеет смысл учитывать не только имена системных вызовов, совершенных программой во время своего выполнения, но и передаваемые в них параметры и возвращаемые значения. Такая информация косвенно учитывает потоки данных в программе и будет полезна при построении модели поведения программы. Наконец, планируется сравнить результаты работы предлагаемого метода не только с методом случайного сокращения наборов тестов, но и с остальными методами, используемыми в данной области.